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Results o f  calculations of  the limiting regime of stabilization of  the average velocity of  a f low and an 

investigation of  the behavior of  statistical characteristics of  turbulence in a straight circular tube that rotates 

about the longitudinal axis based on a differential model of transfer of  Reynolds stresses are presented. I t  

is shown that, in a correct description of  transformation of  the structure of  swirling-flow turbulence 

(Reynolds stresses) with simultaneous attainment of a regime of  stabilization by the profffes o f  the axial and 

circumferential components of the average flow velocity, we need to allow for  the action of  the rotation on 

the spectral expenditure of  kinetic energy of  turbulence. 

1. Introduction. The structure of a developed turbulent flow directed from a nonrotating circular tube to a 
section of a tube of the same diameter that rotates about the longitudJnai axis is altered substantially. The main 

effect of the action of the flow's swirl manifests itself [1-7 ] in a decrease in the turbulence intensities in both the 
radial and axial directions and a decrease in the turbulent friction as the swirl parameter N increases. The profiles 
of the longitudinal U and circumferential W components of the average flow velocity attain a limiting regime of 

stabilization in a long rotating tube: in the range x / D  - 68-168,  the longitudinal-velocity profiles become quite 
similar but (for N - I) are still far from the parabolic profile of a laminar regime of flow, while the circumferential- 
velocity profiles have a limiting parabolic shape ( W / W o  - (r /R)2) .  

Mathematical modeling of the structure of the turbulence of a swirling flow in a circular tube that rotates 

about the longitudinal axis using the E - e  model turns out to be unsatisfactory: for a developed swirling flow the 
model precalculates a profile of the circumferential velocity W that is linear with respect to the radial coordinate, 

which corresponds to solid-body rotation, which is completely inconsistent with experimental data. The model of 

transfer of Reynolds stresses (MTRS) [8, 9 ] enables us to obtain, for moderate swirls of the flow 0V _< 1), profiles 

of the longitudinal and circumferential components of the average velocity that are in satisfactory agreement with 
experimental data. 

Employment of a "standard" equation for the dissipation of the kinetic energy of turbulence e that fails to 

allow for the effect of rotation in the MTRS of [8 ] and neglect of the damping influence of the wall on the turbulent 

motion make it impossible to reproduce suppression of turbulence in a short rotating tube ( x / D  <_ 25) or on the 
initial segment of a long ( x / D  < 168) rotating tube that fits the experimental data adequately. In [8 ], no results 
of calculation of second-order moments (Reynolds stresses) are given. 

The MTRS proposed in [9 ] describes behavior of turbulent stresses (tangential and normal stresses) of a 
developed turbulent flow in both a nonrotating tube and a short circular tube ( x / D  < 25) that rotates about the 

longitudinal axis in accordance with data of measurements [ 1-3 ]. This is achieved by a correction to the destruction 
term of the e-equation in the form of an explicit dependence on the rotational Richardson number Ri. The MTRS 
also involves needed modifications of the transport equations that allow for the effect of low Reynolds numbers 
near the tube wall. 
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Presented below are results of calculating statistical characteristics of a developed turbulent flow in a long 

rotating circular tube by the model of transfer of Reynolds stresses of [9 ] with the aim of elucidating the possibilities 

of describing the limiting stabilization regime for the profiles of the longitudinal and circumferential components 

of the average flow velocity and the transformation of turbulent stresses along the tube. 

2. Model of Turbulent Transfer of Reynolds Stresses. The system of exact transport equations for the 

average-velocity vector and the tensor of turbulent stresses for a steady-state incompressible flow is written in 
general tensor form as 

(1) 

0 k (U i US),k = Dis 4- Pie 4- I T i l -  eU' (2)  

where riS" 2vg/Un(Ui, mUS, k) is  t h e  dissipation t e n s o r ;  Dis =ffi (uittsum),m - (<pu-~d 4- (puj),i) //3 + v(gkmOtiuS),k),m is t h e  

diffusion; P#---(usul')Ui,lc - (uiul~)US, k is the generation; Hi s ffi<P(Uid + us, i))/P is the correlation of pressure-  
velocity shift. 

To obtain a dosed form of system (1)-(2), we need model representations for the terms Dis, HiS, and riS 
[91. 

The model for the diffusion terms in (2) is written as 

E u l)<,,, Du = (~?m <u, ~/.k + c, : ("k "/.~.=. (a) 

where Cs - 0.22 is a numerical coefficient. 

The dissipation tensor is taken in the "standard" isotropic form with a correction for low Reynolds numbers 
near a solid wall: 

2 (ut ui) (4) 
el. / = ; 6 ij e + 2V 2 

X n 

The equation for the rate of dissipation of the kinetic energy of turbulence has the form 

= ~,k + ce  E- <uk J> ~, + ( c e ?  - c;2 0 ~ 2v~ 2 I~ (5) 
e ,m E x n 

where P - PU/2 - --(uiuk)Ui,k is the generation of the turbulence energy; fl  " exp (-CllXnU.O/V); CI1 - 0.5, Cel 
- 1.35; C~e 2 - m a x  (1.4Ce2f2(l - CeaRi)) [9]; Ce2 = 1.8; Ce3 " 2.0;/2 ffi 1 - (2/9) exp (-E4/(6ve)a);  Ce = Cs. The 
Richardson number Ri describes the action of the curvature of the current lines on the turbulence by analogy with 

the influence of stratification of the medium on turbulent transfer. 

The balance equation for the kinetic energy of turbulence is obtained as a result of convolution of Eq. (2) 

by the subscripts i and j with allowance for the model expression (3) for the term of turbulent transfer: 

d e k = e k + cs ~ <.~ ,/) e, + e - ~ - 2 �9 (6) 
g ,tr/ X n 

The correlation of pressure-velocity shift FIij is represented as a sum of three terms [10]: 

(7) 

where 

n ~  ~) = - cs~ ~ <u i uj> - ~ ~u (Csl = 1.5) ; (8) 
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Fig. 1. Behavior  of the coefficient of suppress ion of the longi tudinal  
component of the kinetic energy of turbulence along the tube axis ( r / R  = 0): 

1) N = 0.34, 2) 0.62, 3) 1; for Ri = 0 and expression (12) instead of (9): 4) 
N = 0.34 [1-4) results of calculations by the MTRS of [9 ], Reo = 37,000]; 5) 

N =  0.34, 6) 0.62 ([1-3], R e o -  37,000): 7) N = 0 . 5 ;  8) 1 ([6], Re0 = 30,000) 
[5-8) experimental data ]. 

n(?)u = - c,2 (,o - 2~uP) (q2  = 0.6); (9) 

"I< >] rI;)') = c,1 gon % - (<u. g,. + <Un u,) gj. ", (10) 

I I'll/~2) = Cs2 ~ gnn6il gin + ~ 2  , (11) 

r t I 

with the damping function f - (1 /5)E 3'2 / (exn), C sl " Cs2 0.3. 

The system of closed equations for the sought functions of the average-velocity vector, turbulent stresses, 
and rate of dissipation of the kinetic energy of turbulence (1)-(11) is written [9 ] in an axisymmetric cylindrical 

coordinate system in the boundary-layer approximation and is solved by the reference-volume finite-diference 
method. Details of the numerical procedure and the boundary conditions used for the sought functions can be found 
in [9]. 

3. Results of Numerical Modeling. MTRS (1)-(11), in which e-equation (6) is modified by introduction of 

the rotational Richardson number in the destruction term, reproduces to a satisfactory degree of accuracy [9 ] the 
transformation of the profiles of the longitudinal U and circumferential 14 r components of the average flow velocity 

and the Reynolds stresses under the action of a moderate swirl of the flow 0V < 0.6) in a short rotating tube 
( x / D  = 25). The efficiency of this model for the case of a long tube is discussed below. 

The results of the calculations were compared with experimental data of [1-6 ]. In the experiments of [1-3 ], 

statistical characteristics of a turbulent flow (the first- and second-order moments of the velocity field) were 
measured in the outlet cross section of a short rotating tube for x / D  = 25, Reo = 37,000, and N < 0.6. In the 
experiments of [4-6 ], the behavior of the components of the average flow velocity (circumferential and longitudinal) 

and the longitudinal intensity of the turbulence u' in a long rotating section of a tube ( ~ / D  < 168) was investigated 
for Reo = 0 .5 -3 -104  and N = 0 .5 -3 .  Because of different experimental conditions it is difficult to compare 
quantitatively the data of the measurements. 

Figure 1 shows results of calculating the coefficient of suppression of the longitudinal component of the 
turbulence energy Ku for three values of the swirl parameter (N = 0.34, 0.62, 1.0) as a function of the distance 
along the tube axis. In [1-3 ] most of the experimental data was obtained precisely for these N. For qualitative 

comparison, the figure also shows experimental points of [6 ] for N = 0.5, 1.0 in the cross sections x / D  = 1 I, 36, 

68, and 168. It can be seen that for N = 1 the model precalculates almost complete suppression of the turbulence 
intensity in the cross section x / D  = 168. We should note that when the Reynolds numbers are close the experimental 
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Fig. 2. Profiles of the longitudinal (a) and circumferential (b) components of 

the average flow velocity: a: 1) Re0 = 104, 2) 37,000 (results of calculations), 
3) N - 0 ,  4) 0.5 ([5], Re0 = 104), 5) N - 0 ,  6) 0.5 ([7], Re0-2 -104)  [3-6) 
experimental data]; b: 1) by MTRS, 2) parabolic profile [1-2) results of 
calculations ], 3) [5 ], Reo - 3.104, 4) [7 ], Reo - 2.104 [3, 4) experimental 

data]. 

data of [1-3 ] point to stronger suppression of the turbulence in the initial segment of the rotating tube ( x / D  = 25) 
than the data of [6 ]. It can be inferred that the MTRS of [9 ] reproduces (for Ri ~ 0) the transformation of the 
longitudinal component of the turbulence energy in a short rotating tube and describes qualitatively the behavior 
o f  Ku as the distance along the axis of a long rotating tube increases in the case of a moderate swirl ( N -  0.34). 
For N - 1 the model reproduces the flow structure incorrectly. 

For the profiles of the longitudinal and circumferential components of the average flow velocity, the model 
describes correctly their approach to the limiting state of stabilization [4-7 ]. However, quantitatively, these profiles 
disagree with the profiles measured in the experiment. Furthermore, their dependence on both the Reynolds 

number and the swirl parameter is observed, and the stabilization state itself is recorded, at much larger distances 
from the start of the rotating section of the tube than is observed in the experiments of [4-7 ]. The model reproduces 
qualitatively the decrease in the friction factor on the tube wall due to "laminarization" of the longitudinal-velocity 
profile (more precisely, its "parabolization") and the anisotropy of the components of the kinetic energy of 

turbulence. 
If we set Ri - 0 in the e-equation of the model of [9 ], then, as results of calculations (not given here) show, 

this "standard" MTRS, which is similar to the model of [81, describes correctly neither the behavior of the statistical 
characteristics of the flow in the initial segment of a rotating tube nor the approach of the profiles of the axial and 
circumferential velocities to the r e#me  of stabilization in a long tube, although the increase in turbulence intensity 
in the segment of a rotating channel 68 -< x / D  <_ 168 observed in [6 ] is qualitatively reproduced. 

In [11 ], there is evidence that for swirling flows it is appropriate to modify the part FI~ z) of the correlations 
with pressure pulsations by including in the model expression for it the tensor of convective t ransfer  Ai] = 

(o/ox,) (U,(uiui)): 

( 1 - a~) )  (12) I'I~ 2)  = - Cs2 ~Pij - Ai j  - -3 ~ij (Pkk  _ 

Substitution of (12) for (9) did not lead, for Ri ;e 0, to better results than those presented above for a 
swirling flow in a long tube ( x / D  <- 168). 

Results of a calculation by the model of [9 ] for Ri = 0 with the modified expression (12) for H~ 2) are 
presented in Fig. 2 together with data of measurements [5, 7 ] obtained at Re0 = 10 4. The profiles of the axial and 
circumferential components of the average flow velocity are shown in the cross section x / D  = 160 [5 ] and 120 [7 ] 
for different swirl parameters. For moderate swirls, the model reproduces correctly the transformation of the profile 
of the longitudinal velocity U along the tube under the influence of the superimposed,rotation on the flow and its 
approach to the limiting regime (Fig. 2a). It can be seen that the relationship of U with the Reynolds number in 
the stabilization regime is weak - a result that is in agreement with experiment [4-7]. The profile of the 
circumferential velocity W (Fig. 2b) for N _ 1 attains a limiting parabolic dependence on the radial coordinate that 
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is independent of Re. However the behavior of the longitudinal intensity of the turbulence is reproduced by the 
model only qualitatively (see Fig. 1, curve 4). 

Thus, the structure of a developed turbulent flow in a straight circular tube experiences a complex 
transformation over the entire length of the rotating section of a long tube. A correct description of the action of 
rotation on the turbulence characteristics calls for adequate modeling of the spectral expenditure of turbulence 
energy in the rotating flow. For this purpose, the e-equation based on the concept of equilibrium turbulence is used 
in the majority of modern turbulence models [12, 13]. Simple corrections like incorporation of the rotational 
Richardson number in the destruction term of the e-equation turn out to be insufficient for a complete description 

of the action of rotation on turbulence. It is essential that model representations for a physically correct description 
of the process of turbulence-energy dissipation be developed further. 

The work was carried out with support from the Russian Fund for Fundamental Research, grant No. 

96-02-16001. 

NOTATION 

N -  WOIUo, swirl parameter of the flow; WO, rotational speed of the tube wall; Uo, flow-rate-mean velocity 
of the flow; t /and  IV, longitudinal and circumferential components of the average flow velocity; x and r, coordinates 

in the longitudinal and radial directions; R and D, radius and diameter of the tube; Ui and ui,/-components of the 
vectors of the average velocity and the flow-velocity pulsations, respectively; E - (u2)/2, kinetic energy of 
turbulence; e, rate of dissipation of the kinetic energy of turbulence; Ri - (IV/r)(OIV/ar)/((aU/ar) 2 + (OlV/Or)2), 
rotational Richardson number; g/l metric tensor; 6i], Kronecker symbol; (...), time averaging; P, average pressure; 
p, pressure pulsations; p, density; v, kinematic-viscosity factor; xn, distance along the normal to the tube wall; Reo 
- UoD/v, Reynolds number; u' - x / ~ ,  longitudinal intensity of the turbulence; C, numerical coefficient; f, 
function; u.o, friction velocity on the wall. Subscripts and superscripts: i, A k, 1, and m, subscripts and superscripts 
in the equations in the tensor form of representation; ,i, covariant differentiation with respect to the coordinate x/; 
s, index of the coefficient in the equation for the Reynolds stresses; e, index of the coefficient in the e-equation; 

n, index of the direction along the normal to the wall. 
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